Within this framework, we examine the effects of monopoly
extraction (e.g., price discrimination that captures greater surplus) and
monopoly extension (e.g., conduct that lengthens incumbent tenure) on
steady-state innovation and welfare. Our
main findings are that:
(1) monopoly
extraction promotes innovation and welfare growth rates, but
(2) monopoly
extension inhibits innovation and welfare growth rates if, and only if, the net
intertemporal externality of innovation is negative.
The
latter finding of course begs the question of how the sign of the net
intertemporal externality might be ascertained in practice. Further complicating
matters, it is often difficult to cleanly categorize single-firm conduct as
either extraction or extension. The model nevertheless provides a simple
rule-of-thumb, consistent with antitrust practice, that may help in resolving
such issues. Given that innovation and welfare growth rates tend to move together,
the effect of single-firm conduct on innovation (which is potentially
observable) can be taken as a proxy for its effect on welfare growth rates
(more difficult to observe). If the single-firm conduct in question is
associated with decreased innovation, this suggests both that the intertemporal
externality is negative and that the conduct is a form of monopoly extension
and thus harmful.
Our results offer a theoretical underpinning for the basic
structure of U.S. antitrust law on single-firm conduct. In particular, Section
2 of the Sherman Act prohibits monopolization, but not monopoly.[4]
There is broad consensus among legal scholars that single-firm conduct is
condemned only when it is exclusionary.[5]
Absent exclusion, conduct that merely extracts rents accruing to monopoly power,
legitimately obtained, is legal.[6] Interestingly,
Carlton and Heyer (2008) also argue that extraction and extension should be
accorded very different legal treatment. They favor a permissive attitude
toward monopoly extraction but an outright ban on the extension of monopoly.
Their discussion is intuitive not formal, but their policy prescription is
broadly consistent with the basic principle that exclusion is a necessary element
of single-firm conduct that violates Section 2 of the Sherman Act.
Although the literature examining the relationship between single-firm
conduct and cumulative innovation is sparse, some important work exists. The
paper closest to ours is that of Segal and Whinston (2007). These authors
develop a quality-ladders growth model in which (in the basic setting) two
firms take turns as incumbent monopolist. The non-monopolist (i.e, the “potential
entrant”) invests in each period, and the probability that the potential entrant
displaces the monopolist increases with the level of investment. When entry
occurs, the entrant’s quality increases by a fixed increment over that of the
displaced incumbent. Segal and Whinston (2007) derive conditions under which
competition policy that facilitates entry also stimulates innovation.
We depart from the modeling framework of Segal and Whinston
(2007) in two important respects. First, we model the incumbent monopolist as
actively investing in innovation, while potential entrants are passive.[7]
This assumption arguably fits the evolution of a number of “new economy”
industries fairly well. Bill Gates (1995) has described Microsoft’s inception
in this way:
“We were in the right place at the right time. We got there
first, and our early success gave us the chance to hire more and more smart
people.”
Other
new-economy firms have likewise gained leadership positions through
serendipity, undertaking substantial investment in innovation only after establishing
themselves. Chad Hurley, a founder of YouTube, has said:
“Whether it’s [Google founders] Larry [Page] or Sergey [Brin]
or other people like [Facebook co-founder] Mark Zuckerberg ... We’re all coming
from these simple ideas. We were all really lucky to be in the right place at
the right time.” (Owen, 2008)
We
believe our modeling approach can potentially be applied to many industries
where the lion’s share of R&D is undertaken by the leading firm after the
firm has attained its leadership position.
The second point of divergence from
the quality-ladders approach of Segal and Whinston (2007), and of many others
in the endogenous growth literature, is that we treat R&D as affecting both
the frequency and quality of innovation. Quality-ladders models focus on
innovation frequency to the exclusion of innovation quality. Akcigit (2009)
calls attention to the importance of redressing this imbalance with empirical
evidence that variation in the quality of innovations is substantial. Our
modeling approach can be interpreted as an initial foray into generating
results when both the quality and frequency of innovation vary endogenously.[8]
The remainder of the paper is organized as follows. We lay out
the economic setting in Section 2, derive the private optimum in Section 3 and
relate this to the social optimum in Section 4.
We discuss the implications for competition policy in Section 5 and
conclude in Section 6.
2 Economic Setting
We analyze an industry characterized
by persistent monopoly but with periodic turnover in the incumbent monopolist.
A period in our model represents the lifespan of a given incumbent. At the
outset of each period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
,
a new incumbent is drawn without replacement from a pool of symmetric potential
entrants; we refer to the firm operating in period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
as firm
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
.
Firm 1 remains the incumbent for some span
τ
1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiXdq3damaaBaaaleaapeGaaGymaaWdaeqaaaaa@38E4@
.
Period 2 commences at time
τ
1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiXdq3damaaBaaaleaapeGaaGymaaWdaeqaaaaa@38E4@
,
at which point firm 2 becomes the incumbent and remains so for some span
τ
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiXdq3damaaBaaaleaapeGaaGOmaaWdaeqaaaaa@38E5@
. Firm 3 becomes the incumbent at time
τ
1
+
τ
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiXdq3damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRiabes8a09aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3CBB@
,
and so on. Figure 1 depicts the game timeline for arbitrary values of
τ
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiXdq3damaaBaaaleaapeGaamiDaaWdaeqaaaaa@3922@
.
Figure
1. Incumbency Timeline
The
length of period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
,
which is the lifespan of firm
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
,
is given by
|
|
τ
t
=ϕ(
y
t
) ,
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiXdq3damaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabg2da9iabew9aMnaabmaapaqaa8qacaWG5bWdamaaBaaaleaapeGaamiDaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacckacaGGSaaaaa@41F1@
|
(1)
|
where
y
t
≥0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGHLjYScaaIWaaaaa@3AF5@
is the level of innovation selected by firm
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
(and undertaken at the outset of period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
),
ϕ(
0
)>0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqy1dy2aaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacqGH+aGpcaaIWaaaaa@3BF6@
and
ϕ
'
>0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqy1dy2damaaCaaaleqabaWdbiaacEcaaaGccqGH+aGpcaaIWaaaaa@3A95@
.
The incumbent tenure function
ϕ()
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqy1dyMaaiikaiaacMcaaaa@392B@
captures the notion that a firm’s
technological leadership position will be more durable the greater the firm’s
investment in innovation. Thus firms in
our setting are motivated to innovate in part to extend their tenure as
monopolists.[9]
Innovation
also increases the flow rate of total gross surplus
S
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4ua8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@3835@
,
which is surplus gross of both monopoly deadweight losses and R&D costs, as
discussed more fully below. This flow rate evolves according to
S
t
=(
1+
y
t
)
S
t−1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4ua8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpdaqadaWdaeaapeGaaGymaiabgUcaRiaadMhapaWaaSbaaSqaa8qacaWG0baapaqabaaak8qacaGLOaGaayzkaaGaaiiOaiaadofapaWaaSbaaSqaa8qacaWG0bGaeyOeI0IaaGymaaWdaeqaaaaa@43FC@
.
In period 1,
S
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4ua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37F6@
is an exogenously given base flow rate. We
assume monopoly deadweight losses are a fixed proportion
δ<1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiTdqMaeyipaWJaaGymaaaa@396E@
of
S
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4ua8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@3835@
,[10]
so that the flow of surplus net of these losses is simply
s
t
=(
1−δ
)
S
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Ca8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpdaqadaWdaeaapeGaaGymaiabgkHiTiabes7aKbGaayjkaiaawMcaaiaacckacaWGtbWdamaaBaaaleaapeGaamiDaaWdaeqaaaaa@41B9@
,
and we adopt the normalization
S
0
=1/(1−δ)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4ua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaIXaGaai4laiaacIcacaaIXaGaeyOeI0IaeqiTdqMaaiykaaaa@3F2A@
so that
s
0
=1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Ca8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaIXaaaaa@39F1@
.
The flow rate
s
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Ca8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@3855@
can thus be written as
|
|
s
t
=
∏
i=1
t
(1+
y
i
) .
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Ca8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaadshaa0WdaeaapeGaey4dIunaaOGaaiikaiaaigdacqGHRaWkcaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacMcacaGGGcGaaiOlaaaa@46E8@
|
(2)
|
Taking
equation (1) into account, the present value of the stream
s
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Ca8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@3855@
realized within period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
,
evaluated as of the beginning of the period, can be written as
|
|
∫
0
ϕ(
y
t
)
s
t
e
−rx
dx =
1
r
(
1−
e
−r ϕ(
y
t
)
) (
1+
y
t
)
s
t−1
,
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiabew9aMnaabmaapaqaa8qacaWG5bWdamaaBaaameaapeGaamiDaaWdaeqaaaWcpeGaayjkaiaawMcaaaqdpaqaa8qacqGHRiI8aaGccaWGZbWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiaacckacaWGLbWdamaaCaaaleqabaWdbiabgkHiTiaadkhacaWG4baaaOGaaiiOaiaadsgacaWG4bGaaiiOaiaacckacqGH9aqpcaGGGcGaaiiOamaalaaapaqaa8qacaaIXaaapaqaa8qacaWGYbaaaiaacckadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaeyOeI0IaamOCaiaacckacqaHvpGzdaqadaWdaeaapeGaamyEa8aadaWgaaadbaWdbiaadshaa8aabeaaaSWdbiaawIcacaGLPaaaaaaakiaawIcacaGLPaaacaGGGcWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWG5bWdamaaBaaaleaapeGaamiDaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacckacaWGZbWdamaaBaaaleaapeGaamiDaiabgkHiTiaaigdaa8aabeaak8qacaGGSaaaaa@6D11@
|
(3)
|
where
r>0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOCaiabg6da+iaaicdaaaa@38C3@
is a discount rate common to all firms /
periods. This is the gross social benefit
(gross of R&D costs) of
y
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@385B@
that is realized within period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
.
The gross social benefit in equation (3) can be usefully decomposed as the
product of two factors
b(
y
t
)
s
t−1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOyamaabmaapaqaa8qacaWG5bWdamaaBaaaleaapeGaamiDaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacckacaWGZbWdamaaBaaaleaapeGaamiDaiabgkHiTiaaigdaa8aabeaaaaa@401B@
,
where
s
t−1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Ca8aadaWgaaWcbaWdbiaadshacqGHsislcaaIXaaapaqabaaaaa@39FD@
is the flow of surplus firm
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
inherits from her immediate predecessor and
|
|
b(
y
t
)≡
1
r
(
1+
y
t
)(
1−
e
−r ϕ(
y
t
)
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOyamaabmaapaqaa8qacaWG5bWdamaaBaaaleaapeGaamiDaaWdaeqaaaGcpeGaayjkaiaawMcaaiabggMi6oaalaaapaqaa8qacaaIXaaapaqaa8qacaWGYbaaaiaacckadaqadaWdaeaapeGaaGymaiabgUcaRiaadMhapaWaaSbaaSqaa8qacaWG0baapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiabgkHiTiaadkhacaGGGcGaeqy1dy2aaeWaa8aabaWdbiaadMhapaWaaSbaaWqaa8qacaWG0baapaqabaaal8qacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaiiOaaaa@543A@
|
(4)
|
is firm
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
’s contribution to the gross social benefit.
In
turn,
b(
y
t
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOyamaabmaapaqaa8qacaWG5bWdamaaBaaaleaapeGaamiDaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3B04@
can be further decomposed as the product of
the two factors
1
r
(1+
y
t
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhaaaGaaiiOaiaacIcacaaIXaGaey4kaSIaamyEa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaGGPaaaaa@3E8F@
and
1−
e
−r ϕ(
y
t
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaeyOeI0IaamOCaiaacckacqaHvpGzdaqadaWdaeaapeGaamyEa8aadaWgaaadbaWdbiaadshaa8aabeaaaSWdbiaawIcacaGLPaaaaaaaaa@41CD@
on the right-hand side of (4). The innovation
y
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@385B@
increases surplus flows not only within period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaiaacckaaaa@3827@
but in all future periods as well. The overall
present value of these social benefits is proportional to
1
r
(1+
y
t
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhaaaGaaiiOaiaacIcacaaIXaGaey4kaSIaamyEa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaGGPaaaaa@3E8F@
,
however only the fraction
1−
e
−r ϕ(
y
t
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaeyOeI0IaamOCaiaacckacqaHvpGzdaqadaWdaeaapeGaamyEa8aadaWgaaadbaWdbiaadshaa8aabeaaaSWdbiaawIcacaGLPaaaaaaaaa@41CD@
of the benefit stream is realized within
period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
and so is potentially appropriable by firm
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
.
The
monopolist captures a portion
μ∈0, [1]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0MaeyicI4SaaGimaiaacYcacaGGGcGaaGymaiaac2faaaa@3D6E@
of the surplus flow
s
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Ca8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@3855@
,
the remainder being retained by consumers. In keeping with the terminology of
Carlton and Heyer (2008), we refer to
μ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0gaaa@37C0@
as the rate of monopoly “extraction,” which we
assume is common to all incumbents / periods. We do not model the extraction
process, but rather treat
μ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0gaaa@37C0@
as a parameter, one that is potentially
influenced by competition policy.[11]
We interpret changes in
μ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0gaaa@37C0@
as reflecting changes in the monopolist’s
ability to extract surplus through more flexible price discrimination.[12]
The R&D cost of innovation
y
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@385B@
,
incurred at the beginning of period t, is
|
|
k
t
(
y
t
)=c(
y
t
)
s
t−1
,
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Aa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qadaqadaWdaeaapeGaamyEa8aadaWgaaWcbaWdbiaadshaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaWGJbWaaeWaa8aabaWdbiaadMhapaWaaSbaaSqaa8qacaWG0baapaqabaaak8qacaGLOaGaayzkaaGaaiiOaiaadohapaWaaSbaaSqaa8qacaWG0bGaeyOeI0IaaGymaaWdaeqaaOWdbiaacckacaGGSaaaaa@4980@
|
(5)
|
where
c(
0
)=
c
'
(
0
)=0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4yamaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaeyypa0Jaam4ya8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@4065@
and for
y
t
>0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH+aGpcaaIWaaaaa@3A37@
,
c
'
,
c
''
>0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4ya8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiaacckacaWGJbWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOGaeyOpa4JaaGimaaaa@3E1D@
.
Thus innovation by earlier incumbents makes later innovation more difficult,
consistent with empirical evidence that in many countries patents per
researcher have declined substantially over time (Kortum, 1997).
Although
the R&D costs of innovation grow with time, so too do the associated
rewards. The assumed balancing of these effects (compare equations (2) and (5))
simplifies the analysis considerably by yielding a steady-state equilibrium rate
of innovation and average growth. It is also consistent with the empirical
evidence on “growth without scale effects” (Jones, 1995a,b), as well as modeling
approaches taken in the “second wave” of endogenous growth theories (e.g., Jones,
1995b; Kortum, 1997; Segerstrom, 1998; Howitt, 1999; Aghion et al., 2001).
3 The
Private Optimum
Firm
t’s
profit is the difference between the present value of innovation benefits
appropriated by the firm and the associated R&D costs:
|
|
Π
t
=(
μ b(
y
t
)−c(
y
t
)
)
s
t−1
≡ π(
y
t
)
s
t−1
.
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaeiOd8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpdaqadaWdaeaapeGaaiiOaiabeY7aTjaacckacaWGIbWaaeWaa8aabaWdbiaadMhapaWaaSbaaSqaa8qacaWG0baapaqabaaak8qacaGLOaGaayzkaaGaeyOeI0Iaam4yamaabmaapaqaa8qacaWG5bWdamaaBaaaleaapeGaamiDaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaiaacckacaWGZbWdamaaBaaaleaapeGaamiDaiabgkHiTiaaigdaa8aabeaak8qacqGHHjIUcaGGGcGaeqiWda3aaeWaa8aabaWdbiaadMhapaWaaSbaaSqaa8qacaWG0baapaqabaaak8qacaGLOaGaayzkaaGaaiiOaiaadohapaWaaSbaaSqaa8qacaWG0bGaeyOeI0IaaGymaaWdaeqaaOWdbiaacckacaGGUaaaaa@5F20@
|
(6)
|
The private optimum
y* is implicitly defined by the first-order
condition
|
|
μ
b
'
(
y
)−
c
'
(
y
)=0.
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0MaaiiOaiaadkgapaWaaWbaaSqabeaapeGaai4jaaaakmaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaeyOeI0Iaam4ya8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOlaaaa@4560@
|
(7)
|
We further
assume that profit is concave,
|
|
μ
b
''
(
y
)−
c
''
(
y
)<0 ,
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0MaaiiOaiaadkgapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaGcdaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiabgkHiTiaadogapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaGcdaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiabgYda8iaaicdacaGGGcGaaiilaaaa@47D6@
|
(8)
|
to ensure the
optimum is unique.
Lemma 1. The privately optimal innovation choice is
stationary.
Proof: By inspection of equation (6), firm t’s
optimum does not depend on
s
t−1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Ca8aadaWgaaWcbaWdbiaadshacqGHsislcaaIXaaapaqabaaaaa@39FD@
.
Given
stationarity, we drop subscripts
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
hereafter.
3.1 Intertemporal Externalities of Innovation
Differentiating
equation (4) yields
|
|
b
'
(
y
)=
1
r
{
1−
e
−r ϕ(y)
[
1−(
1+y
) r
ϕ
'
(
y
)
]
} >0.
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOya8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaacaGGGcWaaiWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiabgkHiTiaadkhacaGGGcGaeqy1dyMaaiikaiaadMhacaGGPaaaaOWaamWaa8aabaWdbiaaigdacqGHsisldaqadaWdaeaapeGaaGymaiabgUcaRiaadMhaaiaawIcacaGLPaaacaGGGcGaamOCaiaacckacqaHvpGzpaWaaWbaaSqabeaapeGaai4jaaaakmaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaaacaGLBbGaayzxaaaacaGL7bGaayzFaaGaaiiOaiabg6da+iaaicdacaGGUaGaamOya8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH+aGpcaaIWaGaamOya8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaacaGGGcWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiabgkHiTiaadkhacaGGGcGaeqy1dyMaaiikaiaadMhacaGGPaaaaaGccaGLOaGaayzkaaGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHRaWkcaWG5baacaGLOaGaayzkaaGaaiiOaiabew9aM9aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacaGGGcGaamyza8aadaahaaWcbeqaa8qacqGHsislcaWGYbGaaiiOaiabew9aMjaacIcacaWG5bGaaiykaaaaaaa@8F5B@
13
|
(9)
|
Equation (9)
gives the within-period marginal social benefit of innovation.[14]
Of particular interest is the expression within square brackets,
|
|
1−(
1+y
) r
ϕ
'
(
y
) ,
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaGymaiabgkHiTmaabmaapaqaa8qacaaIXaGaey4kaSIaamyEaaGaayjkaiaawMcaaiaacckacaWGYbGaaiiOaiabew9aM9aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacaGGGcGaaiilaaaa@4677@
|
(10)
|
which represents
the intertemporal externality of innovation. Expression (10) is central to our
main results on innovation and welfare.
Definition. Innovation has a positive (negative) intertemporal externality at
innovation level
y
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaaaa@3708@
if
and only if
1−(
1+y
) r
ϕ
'
(y)>0 (<0)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaGymaiabgkHiTmaabmaapaqaa8qacaaIXaGaey4kaSIaamyEaaGaayjkaiaawMcaaiaacckacaWGYbGaaiiOaiabew9aM9aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiaadMhacaGGPaGaeyOpa4JaaGimaiaacckacaGGOaGaeyipaWJaaGimaiaacMcaaaa@4A51@
.
Observe
that if innovation were to have no effect on incumbent tenure, i.e.,
ϕ
'
=0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqy1dy2damaaCaaaleqabaWdbiaacEcaaaGccqGH9aqpcaaIWaaaaa@3A93@
,
expression (10) would simplify to
1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaGymaaaa@36C5@
and equation (9) would become
b
'
(
y
)=
1
r
(
1−
e
−r ϕ(y)
).
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOya8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaacaGGGcWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiabgkHiTiaadkhacaGGGcGaeqy1dyMaaiikaiaadMhacaGGPaaaaaGccaGLOaGaayzkaaGaaiOlaaaa@4B2B@
In this case, current-period innovation would
have a positive intertemporal
externality: only the fraction
1−
e
−r ϕ(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaeyOeI0IaamOCaiaacckacqaHvpGzcaGGOaGaamyEaiaacMcaaaaaaa@400F@
of the marginal social benefit of innovation would
be realized in the current period. Insofar as innovation tends to lengthen
tenure,
ϕ
'
(
⋅
)>0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqy1dy2damaaCaaaleqabaWdbiaacEcaaaGcdaqadaWdaeaacqGHflY1a8qacaGLOaGaayzkaaGaeyOpa4JaaGimaaaa@3E87@
,
expression (10) falls below one and this incumbency effect of innovation helps
to internalize the positive intertemporal externality (so long as expression (10)
remains nonnegative).
When
expression (10) falls zero, equation (9) becomes
b
'
(
y
)=
1
r
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOya8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaaaaa@3D9E@
.
The intertemporal externality then disappears: the full marginal social benefit
of innovation is captured within the current period. The reason is that in this
case two countervailing intertemporal effects of innovation exactly balance. A
positive spillover from innovation is that later innovators stand on the shoulders of giants: current-period
innovation boosts the flow of gross surplus in all future periods. The
shoulders-of-giants effect pushes innovators toward underinvestment. A negative
spillover is that innovators beggar their
successors: current-period innovation, by lengthening the incumbent’s
tenure, delays the realization of all future innovations. This pushes
innovators toward overinvestment. When expression (10) is zero these effects cancel
and each incumbent fully internalizes the intertemporal externalities of
innovation.
Finally,
when expression (10) turns negative,
b
'
(
y
)>
1
r
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOya8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH+aGpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaaaaa@3DA0@
.
In this case, the beggar-thy-successor effect dominates the shoulders-of-giants
effect, giving incumbents an excessive incentive to innovate from a social,
intertemporal perspective.
3.2
Monopoly Extraction and Innovation
A
second, within-period externality arises when firms fail to fully capture the
social benefits of innovation that flow during their tenure in the market,
i.e., when
μ<1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0MaeyipaWJaaGymaaaa@397F@
.
Proposition 1. Steady-state
equilibrium innovation increases with monopoly extraction.
Proof: Differentiating the
first-order condition (7) with respect to
μ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0gaaa@37C0@
yields
|
|
∂
y
*
∂μ
=
− b'
μ
b
''
−c''
,
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaSaaa8aabaWdbiabgkGi2kaadMhapaWaaWbaaSqabeaapeGaaiOkaaaaaOWdaeaapeGaeyOaIyRaeqiVd0gaaiabg2da9maalaaapaqaa8qacqGHsislcaGGGcGaamOyaiaacEcaa8aabaWdbiabeY7aTjaadkgapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaGccqGHsislcaWGJbGaai4jaiaacEcaaaGaaiiOaiaacckacaGGSaaaaa@4C3F@
|
(11)
|
which is
positive by conditions (8) and (9).
Hereafter, let
y
*
(μ)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOGaaiikaiabeY7aTjaacMcaaaa@3B1B@
denote steady-state equilibrium innovation for
a given monopoly extraction rate
μ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0gaaa@37C0@
.
Clearly
y
*
(
0
)=0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@3C2E@
,
and we assume
y
*
(1)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOGaaiikaiaaigdacaGGPaaaaa@3A20@
is finite.
3.3
Monopoly Extension and Innovation
We now decompose incumbent tenure as
|
|
ϕ(
y
)=λ(
y
)+ε ,
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqy1dy2aaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH9aqpcqaH7oaBdaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiabgUcaRiabew7aLHqadiaa=bkacaGGSaaaaa@443E@
|
(12)
|
where
𝜀 is an
additive “monopoly extension” parameter.
Proposition
2. Steady-state
equilibrium innovation increases (decreases) with monopoly extension if the intertemporal externality is positive
(negative).
Proof: Differentiating the
first-order condition (7) with respect to the monopoly extension parameter 𝜀 yields
|
|
∂
y
*
∂ε
=(
−μ
μ
b
''
−
c
''
)
∂
b
'
∂ε
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaSaaa8aabaWdbiabgkGi2kaadMhapaWaaWbaaSqabeaapeGaaiOkaaaaaOWdaeaapeGaeyOaIyRaeqyTdugaaiabg2da9maabmaapaqaa8qadaWcaaWdaeaapeGaeyOeI0IaeqiVd0gapaqaa8qacqaH8oqBcaWGIbWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOGaeyOeI0Iaam4ya8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaaaaaakiaawIcacaGLPaaacaGGGcWaaSaaa8aabaWdbiabgkGi2kaadkgapaWaaWbaaSqabeaapeGaai4jaaaaaOWdaeaapeGaeyOaIyRaeqyTdugaaaaa@5203@
|
(13)
|
by the implicit
function theorem. The expression in parentheses is positive by condition (8)
and thus
∂
y
*
/∂ε
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyOaIyRaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOGaai4laiabgkGi2kabew7aLbaa@3D32@
has the same sign as
∂b'/∂ε
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyOaIyRaamOyaiaacEcacaGGVaGaeyOaIyRaeqyTdugaaa@3CC2@
.
Differentiating equation (9) with respect to
ε
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqyTdugaaa@37B1@
,
taking equation (12) into account, then yields
|
|
∂
b
'
∂ε
=[
1−(
1+y
)r
ϕ
'
(
y
)
]
e
−r ϕ(y)
.
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaSaaa8aabaWdbiabgkGi2kaadkgapaWaaWbaaSqabeaapeGaai4jaaaaaOWdaeaapeGaeyOaIyRaeqyTdugaaiabg2da9maadmaapaqaa8qacaaIXaGaeyOeI0YaaeWaa8aabaWdbiaaigdacqGHRaWkcaWG5baacaGLOaGaayzkaaGaamOCaiaacckacqaHvpGzpaWaaWbaaSqabeaapeGaai4jaaaakmaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiiOaiaadwgapaWaaWbaaSqabeaapeGaeyOeI0IaamOCaiaacckacqaHvpGzcaGGOaGaamyEaiaacMcaaaGccaGGUaaaaa@577C@
|
(14)
|
Given that the
bracketed expression in equation (14) is expression (10),
∂
y
*
/∂ε
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyOaIyRaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOGaai4laiabgkGi2kabew7aLbaa@3D32@
has the same sign as the intertemporal
externality of innovation.
Intuitively, monopoly extension
helps to internalize the intertemporal externality, spurring innovation if the
externality is positive and paring it back if the externality is negative. This
does not necessarily imply, however, that monopoly extension is welfare
improving, as we show in the next section.
4 The Social Optimum
For a given steady-state innovation
y
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhaaaa@36E7@
,
the present value of the resulting stream of total surplus (net of periodic
R&D costs), evaluated at the start of the game (
t=0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaiabg2da9iaaicdaaaa@38C3@
), can be written as
|
|
W(
y
)=w(
y
)X(
y
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4vamaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaeyypa0Jaam4Damaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaamiwamaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaaaaa@41B7@
,
|
(15)
|
where
w(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4DaiaacIcacaWG5bGaaiykaaaa@395D@
is the component of periodic welfare common
across periods,
|
|
w(
y
)≡b(
y
)−c(
y
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Damaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaeyyyIORaamOyamaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaeyOeI0Iaam4yamaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaaaaa@437D@
,
|
(16)
|
and
|
|
X(y)≡
∑
t=1
∞
[
(
1+y
)
e
−r ϕ(y)
]
t−1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiwaiaacIcacaWG5bGaaiykaiabggMi6oaawahabeWcpaqaa8qacaWG0bGaeyypa0JaaGymaaWdaeaapeGaeyOhIukan8aabaWdbiabggHiLdaakiaacckadaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWG5baacaGLOaGaayzkaaGaamyza8aadaahaaWcbeqaa8qacqGHsislcaWGYbGaaiiOaiabew9aMjaacIcacaWG5bGaaiykaaaaaOGaay5waiaaw2faa8aadaahaaWcbeqaa8qacaWG0bGaeyOeI0IaaGymaaaaaaa@54AF@
|
(17)
|
is a scaling
factor. We refer to
W(⋅)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4vaiaacIcacqGHflY1caGGPaaaaa@3A89@
as total
welfare. We initially focus on the case in which
|
|
(
1+
y
*
(μ)
)
e
−r ϕ(
y
*
(μ)
)
<1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGccaGGOaGaeqiVd0MaaiykaaGaayjkaiaawMcaaiaacckacaWGLbWdamaaCaaaleqabaWdbiabgkHiTiaadkhacaGGGcGaeqy1dy2aaeWaa8aabaWdbiaadMhapaWaaWbaaWqabeaapeGaaiOkaaaaliaacIcacqaH8oqBcaGGPaaacaGLOaGaayzkaaaaaOGaeyipaWJaaGymaaaa@4E0E@
|
(18)
|
for all
μ∈[0, 1]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0MaeyicI4Saai4waiaaicdacaGGSaGaaiiOaiaaigdacaGGDbaaaa@3E4D@
.
When condition (18) holds, the series in (17) converges for any feasible
μ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0gaaa@37C0@
,
and thus both the scaling factor
X(
y
*
(μ)
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiwamaabmaapaqaa8qacaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGccaGGOaGaeqiVd0MaaiykaaGaayjkaiaawMcaaaaa@3DA0@
and total welfare
W(
y
*
(μ)
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4vamaabmaapaqaa8qacaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGccaGGOaGaeqiVd0MaaiykaaGaayjkaiaawMcaaaaa@3D9F@
are finite. We treat the case in which
condition (18) does not hold in Section 4.3, where we consider welfare growth
rates as an alternative welfare metric.
Differentiating (17) yields
|
|
X
'
(
y
)=[
1−(
1+y
) r
ϕ
'
(
y
)
]
e
−r ϕ(y)
∑
t=2
∞
(t−1)
[
(
1+y
)
e
−r ϕ(y)
]
t−2
.
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiwa8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH9aqpdaWadaWdaeaapeGaaGymaiabgkHiTmaabmaapaqaa8qacaaIXaGaey4kaSIaamyEaaGaayjkaiaawMcaaiaacckacaWGYbGaaiiOaiabew9aM9aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaGGGcGaamyza8aadaahaaWcbeqaa8qacqGHsislcaWGYbGaaiiOaiabew9aMjaacIcacaWG5bGaaiykaaaakmaawahabeWcpaqaa8qacaWG0bGaeyypa0JaaGOmaaWdaeaapeGaeyOhIukan8aabaWdbiabggHiLdaakiaacIcacaWG0bGaeyOeI0IaaGymaiaacMcadaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWG5baacaGLOaGaayzkaaGaamyza8aadaahaaWcbeqaa8qacqGHsislcaWGYbGaaiiOaiabew9aMjaacIcacaWG5bGaaiykaaaaaOGaay5waiaaw2faa8aadaahaaWcbeqaa8qacaWG0bGaeyOeI0IaaGOmaaaakiaac6caaaa@7305@
|
(19)
|
The intertemporal
externality of innovation is embodied in
X
'
(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiwa8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiaadMhacaGGPaaaaa@3A3F@
:
Lemma 2.
X
'
(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiwa8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiaadMhacaGGPaaaaa@3A3F@
has the same
sign as the intertemporal externality.
Proof: By
inspection of equation (19),
X
'
(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiwa8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiaadMhacaGGPaaaaa@3A3F@
and expression (10) have the same sign.
From
(15), the derivative of total welfare with respect to innovation is
|
|
W
'
(
y
)=
w
'
(
y
)X(
y
)+w(
y
)
X
'
(
y
).
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4va8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH9aqpcaWG3bWdamaaCaaaleqabaWdbiaacEcaaaGcdaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiaadIfadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiabgUcaRiaadEhadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiaadIfapaWaaWbaaSqabeaapeGaai4jaaaakmaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaaiOlaaaa@4D73@
|
(20)
|
The term
w
'
(
y
)X(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Da8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacaWGybGaaiikaiaadMhacaGGPaaaaa@3DE1@
in equation (20) reflects within-period
effects of innovation, whereas the term
w(
y
)
X
'
(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Damaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaamiwa8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiaadMhacaGGPaaaaa@3DE1@
reflects intertemporal effects. In the absence
of an intertemporal externality (i.e., for
X
'
(
y
)=0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiwa8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@3C4E@
), innovation has only within-period effects, in
which case
W
'
(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4va8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiaadMhacaGGPaaaaa@3A3E@
necessarily has the same sign as
w
'
(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Da8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiaadMhacaGGPaaaaa@3A5E@
.
Otherwise, innovation also affects welfare through the intertemporal effect
w(
y
)
X
'
(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Damaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaamiwa8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiaadMhacaGGPaaaaa@3DE1@
,
tending to raise welfare when the externality is positive and lower welfare
when the externality is negative.
4.1 Monopoly Extraction and Welfare
Lemma 3. Assume condition (18) holds and let M
≡argma
x
μ
W(
y
*
(
μ
)
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyyyIORaamyyaiaadkhacaWGNbGaamyBaiaadggacaWG4bWdamaaBaaaleaapeGaeqiVd0gapaqabaGcpeGaaiiOaiaadEfadaqadaWdaeaapeGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOWaaeWaa8aabaWdbiabeY7aTbGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@48A3@
, i.e., M is the set of monopoly extraction rates
μ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0gaaa@37C0@
that,
given the resulting steady-state equilibrium innovation
y
*
(μ)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOGaaiikaiabeY7aTjaacMcaaaa@3B1B@
, maximize total welfare.
(a)
If the intertemporal externality is
nonnegative for all
y∈[
y
*
(
0
),
y
*
(
1
)]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaiabgIGiolaacUfacaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGcdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiaacYcacaGGGcGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOWaaeWaa8aabaWdbiaaigdaaiaawIcacaGLPaaacaGGDbaaaa@44E9@
, then M
={1}
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyypa0Jaai4EaiaaigdacaGG9baaaa@39CB@
.
(b)
If the intertemporal externality is strictly
negative at
y
*
(1)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOGaaiikaiaaigdacaGGPaaaaa@3A20@
, then every member of M is strictly less than one.
Proof: Note
that M is nonempty by the
extreme value theorem, given that
W(
y
*
(μ)
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4vamaabmaapaqaa8qacaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGccaGGOaGaeqiVd0MaaiykaaGaayjkaiaawMcaaaaa@3D9F@
is continuous on
[
y
*
(
0
),
y
*
(1)
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaamWaa8aabaWdbiaadMhapaWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaaiilaiaacckacaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGccaGGOaGaaGymaiaacMcaaiaawUfacaGLDbaaaaa@4269@
. Recall equation (20) and Proposition 1. For proof
of part (a), first observe that for
y∈[
y
*
(
0
),
y
*
(
1
))
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaiabgIGiolaacUfacaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGcdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiaacYcacaGGGcGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOWaaeWaa8aabaWdbiaaigdaaiaawIcacaGLPaaacaGGPaaaaa@44B5@
we have
w
'
(
y
)>0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Da8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH+aGpcaaIWaaaaa@3C6F@
.
Thus
X
'
(y)≥0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiwa8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiaadMhacaGGPaGaeyyzImRaaGimaaaa@3CBF@
(by hypothesis and Lemma 2) implies
W
'
(
y
)>0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4va8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH+aGpcaaIWaaaaa@3C4F@
for each such
y
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaaaa@3708@
,
and therefore total welfare is highest for
μ=1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0Maeyypa0JaaGymaaaa@3981@
. For proof of part (b), note that
w
'
(
y
*
(
1
)
)=0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Da8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhapaWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaa8qacaaIXaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@3FD4@
.
By hypothesis
X
'
(
y
*
(
1
)
)<0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiwa8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhapaWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaa8qacaaIXaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyipaWJaaGimaaaa@3FB3@
,
which implies
W
'
(
y
*
(
1
)
)<0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4va8aadaahaaWcbeqaa8qacaGGNaaaaOWaaeWaa8aabaWdbiaadMhapaWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaa8qacaaIXaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyipaWJaaGimaaaa@3FB2@
and therefore total welfare is higher for some
μ<1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd0MaeyipaWJaaGymaaaa@397F@
.
According to Lemma 3(b), full
monopoly extraction is socially suboptimal when the intertemporal externality
of innovation is negative. This suggests a possible policy rationale for limits
on price discrimination. Intuitively, a very high rate of monopoly extraction
can harm welfare by slackening the pace of innovation. Although extraction
increases the magnitude of periodic
innovation (Proposition 1), it also decreases the frequency of innovation, through the incumbent tenure effect
ϕ(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqy1dyMaaiikaiaadMhacaGGPaaaaa@3A29@
.
On net, further extraction retards the pace of innovation and harms welfare
when extraction is already very high and the intertemporal externality of
innovation is negative.
Proposition 3. Assume condition (18) holds and let
μ
̂
<1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaaaaaaaaa8qacqaH8oqBaSWdaeqabaWdbiablkWaKaaakiabgYda8iaaigdaaaa@3AAB@
be some
initial rate of monopoly extraction.
(a)
If the intertemporal externality is
nonnegative at
y
*
(
μ
̂
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaiiOaiaadMhapaWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaamaaxacabaWdbiabeY7aTbWcpaqabeaapeGaeSOadqcaaaGccaGLOaGaayzkaaaaaa@3DBA@
, then total welfare increases with monopoly
extraction at this point.
(b)
Assume
W(
y
*
(
μ
)
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4vamaabmaapaqaa8qacaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGcdaqadaWdaeaapeGaeqiVd0gacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@3DEE@
is
strictly concave on
[
y
*
(
0
),
y
*
(
1
)]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaai4waiaadMhapaWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaaiilaiaacckacaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGcdaqadaWdaeaapeGaaGymaaGaayjkaiaawMcaaiaac2faaaa@4267@
so
that M
={
μ
*
}
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyypa0ZaaiWaa8aabaWdbiaacckacqaH8oqBpaWaaWbaaSqabeaapeGaaiOkaaaaaOGaay5Eaiaaw2haaaaa@3D3E@
for some
μ
*
∈[0, 1]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd02damaaCaaaleqabaWdbiaacQcaaaGccqGHiiIZcaGGBbGaaGimaiaacYcacaGGGcGaaGymaiaac2faaaa@3F51@
. If the intertemporal externality is strictly
negative at
y
*
(
μ
̂
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOGaaiika8aadaWfGaqaa8qacqaH8oqBaSWdaeqabaWdbiablkWaKaaakiaacMcaaaa@3C66@
, then total welfare increases (decreases)
with monopoly extraction at this point if
μ
̂
<(>)
μ
*
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaaaaaaaaa8qacqaH8oqBaSWdaeqabaWdbiablkWaKaaakiabgYda8iaacIcacqGH+aGpcaGGPaGaeqiVd02damaaCaaaleqabaWdbiaacQcaaaaaaa@3F01@
.
Proof: Part
(a) follows from equation (20) and Proposition 1, given that
w'(
y
*
(
μ
̂
)
)>0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4DaiaacEcadaqadaWdaeaapeGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOWaaeWaa8aabaWaaCbiaeaapeGaeqiVd0gal8aabeqaa8qacqWIcmajaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH+aGpcaaIWaaaaa@41A7@
for
μ
̂
<1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaaaaaaaaa8qacqaH8oqBaSWdaeqabaWdbiablkWaKaaakiabgYda8iaaigdaaaa@3AAB@
and
X'(
y
*
(
μ
̂
)
)≥0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiwaiaacEcadaqadaWdaeaapeGaamyEa8aadaahaaWcbeqaa8qacaGGQaaaaOWaaeWaa8aabaWaaCbiaeaapeGaeqiVd0gal8aabeqaa8qacqWIcmajaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHLjYScaaIWaaaaa@4246@
by hypothesis and Lemma 2. For proof of part
(b), note first that
μ
*
<1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd02damaaCaaaleqabaWdbiaacQcaaaGccqGH8aapcaaIXaaaaa@3A83@
by Lemma 3 and concavity. Part (b) then
likewise follows from Proposition 1.
When
the intertemporal externality is positive, total welfare unambiguously increases
with monopoly extraction, because in this case the within-period externality
and the intertemporal externality have the same sign. Total welfare then necessarily
increases with innovation, which is spurred by greater monopoly extraction.
The
case of a negative intertemporal externality is less straightforward, both
because
μ
*
<1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqiVd02damaaCaaaleqabaWdbiaacQcaaaGccqGH8aapcaaIXaaaaa@3A83@
in this case and because the welfare function
may not be concave. Imposing concavity puts only modest restrictions on the
tenure function
ϕ(⋅)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqy1dyMaaiikaiabgwSixlaacMcaaaa@3B75@
.[15] When
the intertemporal externality is negative, it has the opposite sign of the
within-period externality. On the margin, then, the effect of innovation on
total welfare depends on which externality is larger in absolute value; the two
externalities exactly balance when the reigning extraction rate is
μ
̂
=
μ
*
<1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaaaaaaaaa8qacqaH8oqBaSWdaeqabaWdbiablkWaKaaakiabg2da9iabeY7aT9aadaahaaWcbeqaa8qacaGGQaaaaOGaeyipaWJaaGymaaaa@3E6B@
.
4.2 Monopoly Extension and Welfare
The welfare effects of monopoly
extension depend on whether innovation is initially above or below the social
optimum as well as on the sign of the intertemporal externality, given that
this sign is also the direction in which innovation changes as a result of
monopoly extension (Proposition 2).
Proposition 4. Assume condition (18) holds and
W(
y
*
(
μ
)
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4vamaabmaapaqaa8qacaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGcdaqadaWdaeaapeGaeqiVd0gacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@3DEE@
is
strictly concave on
[
y
*
(
0
),
y
*
(
1
)]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaai4waiaadMhapaWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaaiilaiaacckacaWG5bWdamaaCaaaleqabaWdbiaacQcaaaGcdaqadaWdaeaapeGaaGymaaGaayjkaiaawMcaaiaac2faaaa@4267@
. Let
μ
̂
<1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaaaaaaaaa8qacqaH8oqBaSWdaeqabaWdbiablkWaKaaakiabgYda8iaaigdaaaa@3AAB@
be the
prevailing rate of monopoly extraction.
(a)
If the intertemporal externality is
positive at
y
*
(
μ
̂
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaiiOaiaadMhapaWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaamaaxacabaWdbiabeY7aTbWcpaqabeaapeGaeSOadqcaaaGccaGLOaGaayzkaaaaaa@3DBA@
, then
total welfare increases (decreases) with monopoly extension at this point
if
μ
̂
<(>)
μ
*
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaaaaaaaaa8qacqaH8oqBaSWdaeqabaWdbiablkWaKaaakiabgYda8iaacIcacqGH+aGpcaGGPaGaeqiVd02damaaCaaaleqabaWdbiaacQcaaaaaaa@3F01@
.
(b)
If the intertemporal externality is
negative at
y
*
(
μ
̂
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaiiOaiaadMhapaWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaamaaxacabaWdbiabeY7aTbWcpaqabeaapeGaeSOadqcaaaGccaGLOaGaayzkaaaaaa@3DBA@
, then
total welfare decreases (increases) with monopoly extension at this point
if
μ
̂
<(>)
μ
*
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaaaaaaaaa8qacqaH8oqBaSWdaeqabaWdbiablkWaKaaakiabgYda8iaacIcacqGH+aGpcaGGPaGaeqiVd02damaaCaaaleqabaWdbiaacQcaaaaaaa@3F01@
.
Proof:
Follows from Proposition 2 and Lemma 3.
Comparing Propositions 3 and 4, note
that extraction and extension move welfare in the same direction when the
intertemporal externality is positive, but move it in opposite directions when
the externality is negative. We consider the potential policy implications of
this observation in Section 5. Insofar as a primary goal of competition policy
is to prohibit single-firm conduct that harms welfare, divergent treatment of
extraction and extension may be appropriate when the intertemporal externality
from innovation is negative.
4.3 Welfare
Growth Rates
When condition (18) does not hold,
the series in (17) diverges and the present value of the net surplus stream is
infinite. This will be the case for the most innovative industries, whose
growth greatly exceeds that of the broader economy, as reflected in market
discount rates. Such rapidly innovating industries are of course of particular
interest as regards competition policy.
As
an alternative welfare metric, we consider the average rate of growth in the industry’s
flow of net surplus. Given innovation
y
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaaaa@3708@
realized every period, the flow of net surplus
in period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
is
w(
y
)
(1+y)
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4Damaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaaiikaiaaigdacqGHRaWkcaWG5bGaaiyka8aadaahaaWcbeqaa8qacaWG0baaaaaa@3EE5@
,
expressed as a present value as of the beginning of period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
.
The time elapsed from the beginning of the game through the end of period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
is
t ϕ(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaiaacckacqaHvpGzcaGGOaGaamyEaiaacMcaaaa@3C46@
.
We refer to the ratio of these as the welfare
growth rate through period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
:
|
|
R
t
(
y
)≡
w(
y
)
(1+y)
t
t ϕ(y)
.
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOua8aadaWgaaWcbaWdbiaadshaa8aabeaak8qadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiabggMi6oaalaaapaqaa8qacaWG3bWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacaGGOaGaaGymaiabgUcaRiaadMhacaGGPaWdamaaCaaaleqabaWdbiaadshaaaaak8aabaWdbiaadshacaGGGcGaeqy1dyMaaiikaiaadMhacaGGPaaaaiaacckacaGGUaaaaa@4E02@
|
(21)
|
The first
derivative of the welfare growth rate through period
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiDaaaa@3703@
can be written as
|
|
R
t
'
(
y
)=(
w(y)
τ(y)
) (
(1+y)
t
t y
)(
η
w,y
−
η
ϕ,y
+(
y
1+y
)t
) ,
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOua8aadaWgaaWcbaWdbiaadshaa8aabeaakmaaCaaaleqabaWdbiaacEcaaaGcdaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiabg2da9maabmaapaqaa8qadaWcaaWdaeaapeGaam4DaiaacIcacaWG5bGaaiykaaWdaeaapeGaeqiXdqNaaiikaiaadMhacaGGPaaaaaGaayjkaiaawMcaaiaacckadaqadaWdaeaapeWaaSaaa8aabaWdbiaacIcacaaIXaGaey4kaSIaamyEaiaacMcapaWaaWbaaSqabeaapeGaamiDaaaaaOWdaeaapeGaamiDaiaacckacaWG5baaaaGaayjkaiaawMcaamaabmaapaqaa8qacqaH3oaApaWaaSbaaSqaa8qacaWG3bGaaiilaiaadMhaa8aabeaak8qacqGHsislcqaH3oaApaWaaSbaaSqaa8qacqaHvpGzcaGGSaGaamyEaaWdaeqaaOWdbiabgUcaRmaabmaapaqaa8qadaWcaaWdaeaapeGaamyEaaWdaeaapeGaaGymaiabgUcaRiaadMhaaaaacaGLOaGaayzkaaGaamiDaaGaayjkaiaawMcaaiaacckacaGGSaaaaa@67EC@
|
(22)
|
where
|
|
η
w,y
≡
y
w
'
(y)
w(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeq4TdG2damaaBaaaleaapeGaam4DaiaacYcacaWG5baapaqabaGcpeGaeyyyIO7aaSaaa8aabaWdbiaadMhacaGGGcGaam4Da8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiaadMhacaGGPaaapaqaa8qacaWG3bGaaiikaiaadMhacaGGPaaaaaaa@46B4@
|
(23)
|
is the
elasticity of the welfare component
w(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4DaiaacIcacaWG5bGaaiykaaaa@395D@
with respect to
y
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaaaa@3708@
and
|
|
η
ϕ,y
≡
y
ϕ
'
(y)
ϕ(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeq4TdG2damaaBaaaleaapeGaeqy1dyMaaiilaiaadMhaa8aabeaak8qacqGHHjIUdaWcaaWdaeaapeGaamyEaiaacckacqaHvpGzpaWaaWbaaSqabeaapeGaai4jaaaakiaacIcacaWG5bGaaiykaaWdaeaapeGaeqy1dyMaaiikaiaadMhacaGGPaaaaaaa@4918@
|
(24)
|
is the
elasticity of incumbent tenure
ϕ(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqy1dyMaaiikaiaadMhacaGGPaaaaa@3A29@
with respect to
y
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaaaa@3708@
.
Lemma 4. Greater steady-state equilibrium innovation raises the welfare growth
rate through every period if
|
|
η
ϕ,y
<
η
w,y
+
y
1+y
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeq4TdG2damaaBaaaleaapeGaeqy1dyMaaiilaiaadMhaa8aabeaak8qacqGH8aapcqaH3oaApaWaaSbaaSqaa8qacaWG3bGaaiilaiaadMhaa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaamyEaaWdaeaapeGaaGymaiabgUcaRiaadMhaaaaaaa@4637@
.
|
(25)
|
Proof: By inspection of equation (22).
Because
the magnitude and frequency of innovation move in opposite directions (given
the incumbent tenure function
ϕ(y)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeqy1dyMaaiikaiaadMhacaGGPaaaaa@3A29@
), the net effect of innovation on welfare
growth rates is ambiguous. Lemma 4 states, however, that if condition (25)
holds then innovation raises welfare growth rates on net. Condition (25)
requires that incumbent tenure not be (much) more elastic with respect to
innovation than is within-period net surplus. This is arguably consistent with
a common understanding of what constitutes an “innovation.”[16]
If condition (25) were sharply violated, the activity in question would begin
to look more like naked monopoly extension than genuine innovation.
Proposition 5. Assume condition (25) holds.
(a)
Greater monopoly extraction raises the
welfare growth rate through every period.
(b)
Greater monopoly extension raises
(lowers) the welfare growth rate through every period if the intertemporal
externality is positive (negative).
Proof:
Given Lemma 4, part (a) follows from Proposition 1 and part (b) follows from
Proposition 2.
We consider the results in
Proposition 5 on welfare growth rates to be crisper than those in Propositions
3 and 4 on (the present value of) total welfare. Total welfare depends on the
discount rate, which puts greater weight on surplus flows in earlier periods,
whereas welfare growth rates are independent of discounting. When the
intertemporal externality is negative, innovation may reduce total welfare but not
welfare growth rates (so long as condition (25) holds). In practice,
competition policy commonly presumes that innovation is good, which seems more
in line with an emphasis on promoting welfare growth rates rather than total
welfare. Regardless, Proposition 5 suggests a qualitatively similar conclusion
to that of Propositions 3 and 4: divergent treatment of extraction and
extension may be justified when the intertemporal externality of innovation is
negative.
5 Competition Policy Implications
As the foregoing analysis reveals, monopoly
extraction and monopoly extension have distinct effects, and the distinctions
turn on the sign of the intertemporal externality of innovation. Extraction and
extension tend to have similar effects on innovation, welfare and growth when
the intertemporal externality is positive, but their effects can diverge
sharply when the externality is negative. Monopoly extension inhibits
steady-state equilibrium innovation and welfare growth rates when the
intertemporal externality is negative, whereas monopoly extraction tends to
promote both innovation and welfare growth rates regardless of the sign of the
externality.
Insofar as an important consideration
in competition policy is the promotion of innovation and growth, the analysis
suggests that appropriate policy toward monopoly extension should turn on the
sign of the intertemporal externality. The analysis suggests a theoretical
rationale for broadly permitting monopoly extraction but prohibiting monopoly
extension if the intertemporal externality of innovation is negative. But this
begs the question of how the sign of the externality might be determined. A
related and equally thorny question is how monopolization might be
distinguished in practice from innovative activity that extends monopoly tenure
through competition on the merits.
The analysis in Section 3 suggests an
answer of sorts to both quandaries. Recall that monopoly extension induces the
incumbent to either expand R&D and innovation, when the intertemporal externality
is positive, or to pare them back when the externality is negative. In the
former case, the activity in question typically improves welfare, but in the
latter case the activity often harms welfare and typically slackens welfare
growth rates. This suggests a (deceptively simple) rule-of-thumb regarding
single-firm conduct that extends monopoly tenure: antitrust authorities should permit
such conduct when it is associated with increased innovation, but prohibit it when
it is associated with decreased innovation. Determining what constitutes
“innovation” by a monopolist may pose hard challenges, but arguably the task is
less complex than measuring welfare changes or evaluating the sign of the
intertemporal externality directly.
Indeed, our proposed rule-of-thumb appears
consistent with antitrust practice. We believe there is broad consensus that
innovative activity which extends monopoly tenure by delivering higher quality
or lower price to consumers is a legitimate form of competition on the merits,
whereas conduct that extends monopoly tenure without generating the salutary
effects of increased innovation constitutes illegal monopolization. Our
analysis provides a theoretical rationale for this policy.
With respect to monopoly extraction,
we show that increased extraction invariably increases innovation and typically
raises welfare growth rates. This suggests that a permissive policy toward pure
monopoly extraction (e.g., more extractive but non-exclusionary forms of price
discrimination) is warranted. Such a policy also appears consistent with
antitrust practice, given that exclusion is a necessary element of single-firm
conduct found to violate Section 2 of the Sherman Act.
6 Conclusions
We develop a model of sequential
innovation to explore the potentially divergent effects of monopoly extraction
and monopoly extension on innovation, welfare and long-term growth. We find
that monopoly extension’s effects turn on the sign of the intertemporal
externality of innovation. Our analysis provides a theoretical rationale for
prohibiting monopoly extension if the externality is negative. The
externality’s sign is revealed by the directional effect monopoly extension has
on the incumbent monopolist’s choice of innovation intensity or quality.
Changes in this intensity that accompany suspected acts of monopoly extension
might be more visible to competition authorities and courts than are changes in
welfare growth rates, and so might serve as useful proxies for changes in
welfare growth rates.
In this paper, we have interpreted
changes in the monopoly extraction rate as flowing from changes in the way the
monopolist price discriminates. Our motivation has been that, in the U.S. at
least, simple monopoly pricing above marginal cost is legal under Section 2 of
the Sherman Act. The European Union, however, further prohibits “abuse of
dominance” that is purely “exploitative.”[17]
Article 82(a) of the EC Treaty prohibits a dominant firm from “imposing unfair
purchase or selling prices.”[18]
In future research, we could model the effects of such a policy on innovation
and welfare. Restricting the monopolist to pricing below the monopoly optimum
would clearly inhibit innovation (Proposition 1), but would also limit static
efficiency losses.
References
Aghion, Philipe, Richard Blundell, Rachel Griffith,
Peter Howitt and Susanne Prantl, 2009.
“The Effects of Entry on Incumbent Innovation and Productivity,” Review of Economics and Statistics 91(1)
(February), 20-32.
Aghion, Philippe, Christopher Harris, Peter Howitt
and John Vickers, 2001. “Competition,
Imitation and Growth With Step-by-Step Innovation,” Review of Economic Studies 68(3), 467-492.
Akcigit, Ufuk, 2009. “Firm Size, Innovation Dynamics
and Growth: A Reduced Form Analysis,” Chapter 2 in Essays on Growth and Innovation Policies, MIT doctoral dissertation
available at http://dspace.mit.edu/handle/1721.1/49708.
Areeda, Phillip, Louis Kaplow and Aaron Edlin,
2004. Antitrust Analysis: Problems, Text, and Cases, Aspen Publishers,
New York.
Arrow, Kenneth J., 1962. “Economic Welfare and the Allocation of
Resources for Invention,” in The Rate and
Direction of Inventive Activity: Economic and Social Factors, NBER,
available at http://www.nber.org/chapters/c2144.
Carlton, Dennis W., and Ken Heyer, 2008. “Extraction vs. Extension: The Basis For
Formulating Antitrust Policy Towards Single-Firm Conduct,” Competition Policy International 4(2), 285-305.
Gates, Bill, 1995. The Road Ahead, Viking Penguin: New York.
Gibson, Owen, 2008. “In the Right Place at the Right
Time,” The Guardian, available at http://www.guardian.co.uk/media/2008/may/26/digitalmedia.youtube.
Gilbert, Richard J., 2006. “Competition and Innovation,” Journal of Industrial Organization Education
1(1), Article 8, available at http://elsa.berkeley.edu/users/gilbert/wp/competition_and_innovation.pdf.
Gilbert, Richard J., and David Newbery, 1982. “Preemptive Patenting and the Persistence of
Monopoly,” American Economic Review
72(2), 514-526.
Howitt, Peter, 1999.
“Steady Endogenous Growth with Population and R&D Inputs Growing,” Journal of Political Economy 107(4),
715-730.
Jones, Charles I., 1995a. “Time Series Tests of Endogenous Growth
Models,” Quarterly Journal of Economics
110(2) (May), 495-525.
Jones, Charles I., 1995b. “R&D-Based Models of Economic Growth,” Journal of Political Economy 103(4)
(August), 759-784.
Katz, Michael L., and Howard A. Shelanski, 2005. “Merger Policy and Innovation: Must
Enforcement Change to Account for Technological Change?” Innovation Policy and the Economy 5, 109-165.
Kortum, Samuel S., 1997. “Research, Patenting and Technological
Change,” Econometrica 65(6)
(November), 1389-1419.
O’Donoghue, Ted, 1998. “A Patentability Requirement
for Sequential Innovation,” RAND Journal
of Economics 29(4), 654-679.
O’Donoghue, Ted, Suzanne Scotchmer and
Jacque-Francois Thisse, 1998. “Patent
Breadth, Patent Life, and the Pace of Technological Progress,” Journal of Economics & Management
Strategy 7(1), 1-32.
Schumpeter, Joseph A., 1942. Capitalism,
Socialism and Democracy, Harper and Brothers, New York.
Scotchmer, Suzanne, 1991. “Standing on the Shoulders
of Giants: Cumulative Research and the Patent Law,” Journal of Economic Perspectives 5(1), 29-41.
Segal, Ilya, and Michael D. Whinston, 2007. “Antitrust in Innovative Industries,” American Economic Review 97(5)
(December), 1703-1730.
Segerstrom, Paul S., “Endogenous Growth Without Scale
Effects,” American Economic Review
88(5), 1290-1310.
Vickers, John, 2005.
“Abuse of Market Power,” Economic
Journal 115 (June), F244-F261.
Wahl, Nils, 2007.
“Exploitative High Prices and Competition Law - A Personal
Reflection,” in The Pros and Cons of High
Prices, Konkurrensverket (Swedish Competition Authority), 47-64, available
at http://www.konkurrensverket.se/upload/Filer/Ovrigt/Konferenser/Pros_Cons/Pros%20and%20Cons%20of%20High%20Prices.pdf.
Werden, Gregory J., 2009. “Monopoly Pricing and Competition Policy:
Divergent Paths to the Same Destination?,” in 2008 Fordham Competition Law Institute 649 (Barry Hawk ed.).